logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subjecticon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
首页
/
数学
题目

设数列|x_(n)|满足:x_(1)in(0,pi),x_(n+1)=sin x_(n)(nin N_(+)).证明lim_(ntoinfty)x_(n)存在,并求此极限.

设数列$|x_{n}|$满足:$x_{1}\in(0,\pi)$,$x_{n+1}=\sin x_{n}(n\in N_{+})$.证明$\lim_{n\to\infty}x_{n}$存在,并求此极限.

题目解答

答案

设数列 $\{x_n\}$ 满足 $x_1 \in (0, \pi)$,且 $x_{n+1} = \sin x_n$。 1. **有界性**: 由 $x_1 \in (0, \pi)$,知 $x_2 = \sin x_1 \in (0, 1]$。对于 $n \geq 2$,$x_n \in (0, 1]$,因 $\sin x$ 在 $(0, 1]$ 内值域为 $(0, \sin 1] \subset (0, 1]$。故数列有界。 2. **单调性**: 考虑 $x_{n+1} - x_n = \sin x_n - x_n$。令 $f(x) = \sin x - x$,则 $f'(x) = \cos x - 1 \leq 0$(当 $x \in (0, \pi)$ 时),且 $f(0) = 0$。因此,$f(x) < 0$ 对 $x \in (0, \pi)$ 成立,即 $x_{n+1} < x_n$。数列单调递减。 3. **极限**: 由单调有界准则,数列收敛。设极限为 $L$,则 $L = \sin L$。在 $[0, \pi]$ 内,该方程的解为 $L = 0$。 **结论**:数列极限存在,且极限为 $\boxed{0}$。

解析

考查要点:本题主要考查数列极限的存在性证明及求解,涉及单调有界定理的应用,以及方程求解的能力。

解题核心思路:

  1. 有界性:通过数学归纳法证明数列被区间$(0,1]$限制。
  2. 单调性:利用函数$f(x)=\sin x -x$在$(0,\pi)$内的单调性,证明数列单调递减。
  3. 极限求解:结合递推关系和方程$L=\sin L$,确定极限值。

破题关键点:

  • 函数$\sin x$在$(0,\pi)$内的性质:$\sin x < x$,且$\sin x$的值域为$(0,1]$。
  • 方程$L=\sin L$的唯一解:在$[0,\pi]$内,只有$L=0$满足。

1. 证明数列有界

  • 初始项:$x_1 \in (0,\pi)$,则$x_2 = \sin x_1 \in (0,1]$。
  • 归纳假设:假设$x_n \in (0,1]$,则$x_{n+1} = \sin x_n \in (0, \sin 1] \subset (0,1]$。
  • 结论:数列$\{x_n\}$被$(0,1]$限制,即有上界1,下界0。

2. 证明数列单调递减

  • 构造函数:$f(x) = \sin x - x$,其导数为$f'(x) = \cos x - 1 \leq 0$(当$x \in (0,\pi)$时)。
  • 单调性:$f(x) < 0$在$(0,\pi)$内恒成立,故$x_{n+1} = \sin x_n < x_n$,即数列单调递减。

3. 求极限值

  • 极限存在性:由单调有界定理,数列收敛,设极限为$L$。
  • 递推关系:$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \sin x_n$,得$L = \sin L$。
  • 方程求解:在$[0,\pi]$内,唯一解为$L=0$(因$\sin x < x$在$(0,\pi)$内成立)。

相关问题

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 3637 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 59 60 61 62 63 64 请找出左图表的规则(至少5个)

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 下列命题中错误的是( )A B C D

  • 从下面各数中找出所有的质数. 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

上一页下一页
logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号