32.设随机变量(X Y)具有概率密度-|||-f(x,y)= { (x+y) 0,,D(X+Y)

题目解答
答案

解析
考察知识
本题主要考察二维随机变量的数字特征计算,包括数学期望$E(X)$、$E(Y)$、方差$D(X)$、$D(Y)$、协方差$\text{Cov}(X,Y)$、相关系数$\rho_{XY}$以及$D(X+Y)$的计算,涉及二重积分运算及数字特征的性质。
解题思路及步骤
1. 计算$E(X)$
根据数学期望定义:
$E(X)=\int_{-\infty}^{\infty}\_{-\infty}^{\infty}xf(x,y)dxdy$
由于$f(x,y)$仅在$0,2)×(0,2)非零,积分限简化为\(x\in[0,2],y\in[0,2]$:
$\begin{align*}E(X)&=\_{0}^{2}dx\_{0}^{2}\frac{x}{8}(x+y)dy\\&=\frac{1}{8}\_{0}^{2}x\left[\_{0}^{2}(x+y)dy\right]dx\\&=\frac{1}{8}\_{0}^{2}x\left(xy+\frac{1}{2}y^2\right)\bigg|_0^2dx\\&=\frac{1}{8}\_{0}^{2}x\left(2x+\frac{12\cdot4\right)dx=\frac{1}{8}\_{0}^{2}x(2x+2)dx\\&=\frac{1}{4}\_{0}^{2}(x^2+x)dx=\frac{1}{4}\left(\frac{8}{3}+2\right)=\frac{7}{6}\end{align*}$
2. 计算$E(Y)$
由$对称性,\(f(x,y)$中$x$与$y$互换不变),得$E(Y)=E(X)=\frac{7}{6}$。
3. 计算$E(X^2)$和$D(X)$
$\begin{align*}E(X^2)&=\_{0}^{2}dx\_{0}^{2}\frac{x^2}{8}(x+y)dy\\&=\frac{1}{8}\_{0}^{2}x^2\left(2x+2\right)dx=\frac{1}{4}\_{0}^{2}(x^3+x^2)dx\\&=\frac{1}{4}\left(\frac{16}{4}+\frac{8}{3}\)=\frac{1}{4}\left(4+\frac{8}{3}\right)=\frac{5}{3}\end{align*}$
方差:
$D(X)=E(X^2)-[E(X)]^2=\frac{5}{3}-\left(\frac{7}{6}\right)^2=\frac{5}{3}-\frac{49}{36}=\frac{60-49}{36}=\frac{11}{36}$
同理$D(Y)=D(X)=\frac{11}{36}$。
4. 计算$\text{Cov}(X,Y)$
先算$协方差定义\(\text{Cov}(X,Y)=E(XY)-E(X)E(Y)$):
$\begin{align*}E(XY)&=\_{0}^{2}dx\_{0}^{2}\frac{xy}{8}(x+y)dy\\&=\frac{1}{8}\_{0}^{2}x\left[\_{0}^{2}(xy+y^2)dy\right]dx\\&=\frac{1}{8}\_{0}^{2}x\left(\frac{1}{2}x\cdot4+\frac{1}{3}\cdot8\right)dx=\frac{1}{8}\_{0}^{2}x\left(2x+\frac{8}{3}\right)dx\\&frac{1}{8}\left(2\cdot\frac{8}{3}+\frac{8}{3}\cdot4\right)=\frac{1}{8}\left(\frac{16}{3}+\frac{32}{3}\right)=\frac{4}{3}\end{align*}$
故:
$\text{Cov}(X,Y)=\frac{4}{3}-\left(\frac{7}{6}\right)^2=\frac{4}{3}-\frac{49}{36}=\frac{48-49}{36}=-\frac{1}{36}$
5. 计算$\rho_{XY}$
相关系数:
$\rho_{XY}=\frac{\text{Cov}(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}=\frac{-\frac{1}{36}}{\sqrt{\frac{1{36}}\sqrt{\frac{11}{36}}}=-\frac{1}{11}$
6. 计算$D(X+Y)$
由方差性质:
$D(X+Y)=D(X)+D(Y)+2\text{Cov}(X,Y)=\frac{11}{36}+\frac{11}{36}+2\left(-\frac{1}{36}\right)=\frac{22-2}{36}=\frac{20}{36}=\frac{5}{9}$