5 判断(10分)在行列式的展开式中,正项的个数与负项的个数相等,各占一半.A. ×B. √
[题目]设 (x,y)=(int )_(0)^1f(t)|xy-t|dt, 其中f(t)在[0,1]上-|||-连续, leqslant xleqslant 1 ,0≤y≤1, 求 dfrac ({partial )^2u}(partial {x)^2}cdot dfrac ({partial )^2u}(partial {y)^2},
下列说法正确的是 A 任意一个 n 级 排列都可以经过一系列的对换变成排列 123 . . n .B 每作一次对换不改变排列的奇偶性 . C 如果 n ( n > 1 ) 阶行列式的值等于零, 则行列式中必有一行全为零 . D 如果 n ( n > 1 ) 阶行列式的值等于零,则行列式中必有两行成比例
用克莱姆法则求解方程组 ) (x)_(1)-(x)_(2)-(x)_(3)=-1 -2(x)_(1)+2(x)_(2)+(x)_(3)=1 2(x)_(1)-(x)_(2)+3(x)_(3)=1 .A.2,2,1B.2,1,2C-2,-2,1D.-2,-1,2
3.下列各函数中可以作为某个随机变量x的分布函数的是 () .-|||-F(x)= ^2),xleqslant 0 1,xgt 0
1.(填空题,12分)-|||-设有三人的论域 = {x)_(1),(x)_(2),(x)_(3)} ,确定一个模糊集-|||-合A,用来表示他们的学习好的隶属程度,假设-|||-他们的平均分分别为98分、72分、86分,映射关-|||-系为平均成绩除以100,则使用扎德表示法可以-|||-表示为 = 1 |(x)_(1)+|2||(x)_(2)+|3|(x)_(3)
7.求下列公式的主析取范式,再用主析取范式求主合取范式.-|||-(1)(p^q)Vr
行列式为零,则行列式有两行(列)完全相同。A. 对B. 错
分别用单纯形法中的大M法和两阶段法求解下述线性规划问题,并指出属哪一类解。 (1) =2(x)_(1)+3(x)_(2)-5(x)_(3)-|||- ) (x)_(1)+(x)_(2)+(x)_(3)=7 2(x)_(1)-5(x)_(2)+(x)_(3)geqslant 10 (x)_(1),(x)_(2),(x)_(3)geqslant 0 .
已知z=(sqrt(2))/(2)(1-i),则z^100+z^50+1的值为()A. -iB. iC. 1D. -1
热门问题
计算: (log )_(2)9cdot (log )_(3)4= __
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列命题中错误的是( )A B C D
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
【填空题】sin dfrac (11)(6)pi =___.
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
线性代数解答已知线性方程组{x1+x2=1{x1-x3=1{x1+ax2+x3=b(1)试问:常数A,B取何值时,方程组有无穷多解,唯一解,无解?(2)当方程组有无穷多解时,求出其通解要详细答案,X后面的数字全是小位数,是X的1次方.3次方.
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111