4.设f(x)在[a,b]上二阶可导 f(a)=f(b)=0 ,'(a)f'(b)gt 0 ,证明:-|||-(2)方程 ''(x)=0 在(a,b)内至少有一个实根;
在下列何种情况下,齐次线性方程组 } kx_1 + 2x_2 + x_3 = 0 2x_1 + kx_2 = 0 x_1 - x_2 + x_3 = 0 仅有零解 ( )A. k neq -2B. k neq 3C. k neq -2 或 k neq 3D. k neq -2 且 k neq 3
6.下列说法中正确的个数是 () 个。-|||-1.两个无穷大之和仍为无穷大-|||-ll.有界函数与无穷大乘积是无穷大-|||-III.由于 lim _(xarrow 0)dfrac ({x)^2+5x+2}({x)^2+8x+2}=1 所以当 arrow 0 时, ^2+5x+2 与 ^2+8x+2 是等-|||-价无穷小-|||-Iv.无界函数一定是无穷大-|||-(A)O (B)1-|||-(C)2 (D)3
二元函数z=xy(3-x-y)的极值点是( )A. (0,0)B. (0,3)C. (3,0)D. (1,1)
5.微分方程y^m-y=0的通解为y=____.
[简答题]10.设随机变量UND的概率密度-|||-f(x)= { ,0lt xlt 2 0.xgeqslant 2 .-|||-(1)求a值;-|||-(2)求分布函数F(x);-|||-(3)求概率 (xleqslant 1).
2. n 阶方阵 A 具有 n 个不同的特征值是 A 与对角阵相似的A. 充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件
函数f(x)在点x0处有定义是其在x0处极限存在的( )A.必要非充分条件B.充要条件C.充分非必要条件D.无关条件
设 z(x,y) 为 由 方 程 2xz-2xyz+ln(xyz)=0 确定的函数,则 (partial z)/(partial x)=(). A. -(2z-2yz+frac(1)/(xyz))(2x-2xy+(1)/(xyz))B. -(2x-2xy+frac(1)/(xyz))(2z-2yz+(1)/(xyz))C. -(2z-2yz+frac(1)/(x))(2x-2xy+(1)/(z))D. -(2x-2xy+frac(1)/(z))(2z-2yz+(1)/(x))
热门问题
3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1
线性代数解答已知线性方程组{x1+x2=1{x1-x3=1{x1+ax2+x3=b(1)试问:常数A,B取何值时,方程组有无穷多解,唯一解,无解?(2)当方程组有无穷多解时,求出其通解要详细答案,X后面的数字全是小位数,是X的1次方.3次方.
下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)
下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。
24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.
计算: (log )_(2)9cdot (log )_(3)4= __
考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5
与十进制[1]数 45.25 等值的十六进制[2]数是_____。
https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。
__-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}
已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an
下列命题中错误的是( )A B C D
8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111
4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o
【填空题】sin dfrac (11)(6)pi =___.
已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。
下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。
10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .
【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4