logo
  • write-homewrite-home-active首页
  • icon-chaticon-chat-activeAI 智能助手
  • icon-pluginicon-plugin-active浏览器插件
  • icon-subject-activeicon-subject-active学科题目
  • icon-uploadicon-upload-active上传题库
  • icon-appicon-app-active手机APP
  • 医学医学
  • 政治学政治学
  • 管理管理
  • 计算机计算机
  • 教育教育
  • 数学数学
  • 艺术艺术

设函数 '(x)= {x)^2,0leqslant xleqslant 1 dfrac (2)(3x),1leqslant xleqslant 2 ..

( 答案用小数表示用其他形式表示无效 ) 若以下是二维离散型随机变量(X,Y)的联合分布律""-|||-x-|||--3 -1 0 2-|||-Y-|||--2 0.13 0.05 0.1 0.07-|||--1 0.05 0.1 0.02 0.08-|||-1 0.07 0.01 0.06 0.11-|||-2 0.01 0.03 0.02 0.09则边缘分布P(X=-3)=__________ ;P(X=0)=___________ ;P(Y=-1)=____________ ; P(Y=2)=___________ ; 联合分布函数F(1,1)=___________ ; 边缘分布函数""-|||-x-|||--3 -1 0 2-|||-Y-|||--2 0.13 0.05 0.1 0.07-|||--1 0.05 0.1 0.02 0.08-|||-1 0.07 0.01 0.06 0.11-|||-2 0.01 0.03 0.02 0.09_________.

设随机变量 X 在 [0,1] 上服从均匀分布,Y 在 [0,2] 上服从均匀分布,f_1(x),f_2(x) 分别为 X 和 Y 的密度函数,则下列函数中,不是密度函数的是()。 A. (2)/(3)f_1(x)+ (1)/(3)f_2(x)B. (1)/(3)f_1(x)+ (2)/(3)f_2(x)C. 2f_1(x)- f_2(x)D. 2f_2(x)- f_1(x)

已知一批产品共N件,其中M件是次品,从中有放回的抽取若干次,每次取出一件,则在一次抽取中取得次品数X的分布律为( ).A._(k)= 1-M/N 抽得正品 M/N 抽得次品 B._(k)= 1-M/N 抽得正品 M/N 抽得次品 C._(k)= 1-M/N 抽得正品 M/N 抽得次品 D._(k)= 1-M/N 抽得正品 M/N 抽得次品

[5.5]当随机变量的可能值充满区间 () ,则 varphi (x)=cos x 可以成为随机变量X的分布-|||-密度.-|||-(A) [ 0,dfrac (pi )(2)] (B) [ dfrac (pi )(2),pi ] (C)[0,π] (D) [ dfrac (3)(2)pi ,dfrac (7)(4)pi ]

17.计算二重积分 int (int )_(D)(e)^(x^2+{y)^2}dxdy, 其中D是由曲线 =sqrt (1-{x)^2} 和x轴所围成的闭区域.

3.设连续型随机变量ξ的概率密度为-|||-.p(x)= ),xgt 0 0,xleqslant 0 .-|||-则 k=-|||-A.2-|||-B. 1/2-|||-x C. -1/2-|||-D. -2

设随机变量X具有对称的概率密度,即f(-x)=f(x),则对任意a>0,P(|X|>a)=______.A. 1-2F(a)B. 2F(a)-1C. 2-F(a)D. 2[1-F(a)]

设5个晶体管中有2个次品,3个正品,如果每次从中任取1个进行测试,测试后的产品不放回,直到把2个次品都找到为止,则需要进行的测试次数§是一个随机变量,则求Pl§Pl和Pl§Pl

43.若每条蚕的产卵数服从泊松分布,参数为λ,而每个卵变-|||-为成虫的概率为p,且各卵是否变为成虫彼此独立,求每蚕养活k-|||-只小蚕的概率.

  • 274
  • 275
  • 276
  • 277
  • 278
  • 279
  • 280
  • 281
  • 282
  • 283
  • 284

热门问题

  • 【填空题】sin dfrac (11)(6)pi =___.

  • 计算: (log )_(2)9cdot (log )_(3)4= __

  • 已知等差数列 12 , 8 , 4 , 0...... 求它的通项公式an 和前 10 项 的和an

  • 已知一元二次函数的图像的顶点坐标为(1,2),并且经过点P(3,-4),求:(1)函数的解析式;(2)函数图像的对称轴(3)函数单调减的区间。

  • 下面哪个逻辑等价关系是不成立的()A. forall x-P(x)equiv -square xP(x)B. forall x-P(x)equiv -square xP(x)C. forall x-P(x)equiv -square xP(x)D. forall x-P(x)equiv -square xP(x)

  • 下列哪项不是命题()A. 我正在说谎。B. 13能被6整除。C. 你在吃饭吗D. 北京是中国的首都。

  • __-|||-(10 ) lim _(xarrow infty )dfrac ({x)^3-2(x)^2+5}(100{x)^2+15}

  • 与十进制[1]数 45.25 等值的十六进制[2]数是_____。

  • 24.设二维随机变量(X,Y)在区域 = (x,y)|xgeqslant 0,ygeqslant 0,x+yleqslant 1 上服从均匀分布.求(1)-|||-(X,Y)关于X的边缘概率密度;(2)-|||-=x+y 的概率密度.

  • 3.已知连续型随机变量X的概率密-|||-度为-|||-f(x)= 0, 其他,-|||-kx+b, 1

  • 线性代数解答已知线性方程组{x1+x2=1{x1-x3=1{x1+ax2+x3=b(1)试问:常数A,B取何值时,方程组有无穷多解,唯一解,无解?(2)当方程组有无穷多解时,求出其通解要详细答案,X后面的数字全是小位数,是X的1次方.3次方.

  • 下列哪项不是命题()A. 我正在说谎。B. 北京是中国的首都C. 你在吃饭吗D. 13能被6整除。

  • 8 . 有一个农夫带一匹狼、一只羊和一棵白菜过河(从河的北岸到南岸)。如果没有农夫看管,则狼要吃羊,羊要吃白菜。但是船很小,只够农夫带一样东西过河。用0和1表示狼、羊、白菜分别运到南岸的状态,0表示不在南岸,1表示在南岸,(如:100表示只有狼运到南岸)。初始时,南岸状态为000,表示狼、羊、白菜都没运到南岸,最终状态为111,表示狼、羊、白菜都运到了南岸。用状态空间为农夫找出过河方法,以下狼、羊、白菜在南岸出现的序列可能是( )。A. 000-010-100-101-111B. 000-010-001-101-111C. 000-100-110-111D. 000-001-011-111

  • https:/img.zuoyebang.cc/zyb_a9fbde2ddd269cef5638c27e19aff9b4.jpg.5dm 5dm-|||-18 dm一个底面是圆形的扫地机器人,贴合着一块地毯边缘行进一周(如图)。这块地毯的两端是半圆形中间是长方形。扫地机器人圆形底面的半径是https:/img.zuoyebang.cc/zyb_10216bc971f58ed03f5ceaf1efd30f89.jpg.5dm 5dm-|||-18 dm,它的圆心走过路线的长度是______https:/img.zuoyebang.cc/zyb_b5517f317a704553c4186b8deb5b7a51.jpg.5dm 5dm-|||-18 dm。​

  • 【单选题】设U=(u1,u2,u3,u4), 有模糊集合A、B:A = 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4,B = 0.3/u1 + 0.2/u2 + 0.6/u3 + 0.4/u4,则模糊集合A与B的交、并、补运算结果正确的一项是 。A. A 与 B 的交运算: 0.1/u1 + 0.2/u2 + 0.6/u3 + 0.6/u4B. A 与 B 的并运算: 0.1/u1 + 0.7/u2 + 0.6/u3 + 0.6/u4C. A 的补运算: 0.9/u1 + 0.3/u2 + 0.4/u3 + 0.4/u4D. B 的补运算: 0.7/u1 + 0.8/u2 + 0.4/u3 + 0.4/u4

  • 下列命题中错误的是( )A B C D

  • 考虑下面的频繁3-项集的集合:⑴ 2, 3}, (1,2,4), (1,2, 5), (1,3,4), (1, 3, 5), (2, 3,4), (2, 3, 5), (3,4, 5)假 定数据集中只有5个项,采用合并策略,由候选产生过程得到4-项集不包含()A. 1, 2, 3, 4B. 1, 2, 3, 5C. 1, 2,4, 5D. 1,3, 4, 5

  • 10 . 函数(x)=sin (2x+dfrac (pi )(6))的最小正周期为___________ .

  • 4.已知 sin alpha =-dfrac (3)(5), 且α是第三象限的角,则 cos alpha = __ ,-|||-tan alpha = __ o

logo
广州极目未来文化科技有限公司
注册地址:广州市黄埔区揽月路8号135、136、137、138房
关于
  • 隐私政策
  • 服务协议
  • 权限详情
学科
  • 医学
  • 政治学
  • 管理
  • 计算机
  • 教育
  • 数学
联系我们
  • 客服电话: 010-82893100
  • 公司邮箱: daxuesoutijiang@163.com
  • qt

©2023 广州极目未来文化科技有限公司 粤ICP备2023029972号    粤公网安备44011202002296号